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A historical perspective on Deep

Learning approaches, focusing on

Convolutional Neural Networks

(CNN’s). The presentation includes
operating principles, specific
terminology, architectures, and

current applications.



INTRODUCTION

Motivations, principles, terminology,
historical notes

* FOUNDATIONS
@\ Architectures, algorithms, limitations

.\H APPLICATIONS

v—| Pattern recognition, biomedical,
automotive, biometrics, arts

« CONCLUSIONS

@ What’s next ?



Introduction

Historical notes

A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]
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Introduction

Historical notes

A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]
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Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“‘AlexNet’
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Introduction

Historical notes

1998

LeCun et al.

Image Maps
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Convolutional Neural Networks (CNN’s)

Principles, architectures, terminology

Lecture 5:
Convolutional Neural Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 1 April 16, 2019



Convolutional Neural Networks (CNN’s)
Principles, architectures, terminology

How do convolutions work?

input volume output volume
(n_H_prev, n_W_prev, n_C_prev) (n_H,n_W, n_C)

First filter output ~ Second filter output
/ (n_H, n_W) (n_H, n_W)
stack

convolve filter outputs

= =

L Filter 1 Filter 2
(f, f, n_C_prev) (f, f, n_C_prev)

n_C = 2 = #filters @ @




Convolutional Neural Networks (CNN’s)

Principles, architectures, terminology

Last time: Act|vat|on Functions

Leaky ReLU )
max(0.1z, x)
tanh Maxout
tanh(z max(w? z + by, wl z + by)
ReLU / ELU J
4 x>0
{a(e"’—l) r<0 - - io

SlngId

1+e &

maxO:z:
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Convolutional Neural Networks (CNN’s)

Principles, architectures, terminology

Last time: Weight Initialization

Initialization too small:
Activations go to zero, gradients also zero,
No learning =(
L J L J L J L J Initialization too big:
Activations saturate (for tanh),
i | | Gradients zero, no learning =(

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7- 5 April 25, 2019

Initialization just right:
Nice distribution of activations at all layers,
Learning proceeds nicely




Convolutional Neural Networks (CNN’s)

Principles, architectures, terminology

Last time: Data Preprocessing

original data zero-centered data normalized data
10 0
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Convolutional Neural Networks (CNN’s)

Principles, architectures, terminology

First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

Loss
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Convolutional Neural Networks (CNN’s)

Principles, architectures, terminology

Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Loss

w1
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Convolutional Neural Networks (CNN’s)

Principles, architectures, terminology

Today: CNN Architectures

Case Studies
- AlexNet
- VGG
- GooglLeNet
- ResNet

Also....
- SENet - DenseNet
- NiN (Network in Network) - FractalNet
- Wide ResNet - MobileNets
- ResNeXT - NASNet
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Convolutional Neural Networks (CNN’s)

Principles, architectures, terminology

Lecture 9:
CNN Architectures

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture9- 1 April 30, 2019



It is the most important computing
development in the last 20 years, and [every
major technology company is] going to have to
race to make sure that Al’'s a core competency.

Jen-Hsun Huang
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HOW TO REDUCE TRAINING TIME/DATABASE DIMENSION ?

¢ & QN =/ VF N .

HOW DEEP IS DEEP ? CAN WE TRUSTIT ?

END OF
MACHINE LEARNING ?

WHY DOES IT WORK ? CAN WE FOOL THEM ?

KEY QUESTIONS ABOUT DEEP LEARNING



Applications

Deep learning frameworks

PYTORCH
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Applications
Object detection/classification

Imagenet Image Recognition

= = Human performance

Error rate
o
o

0.10

E-ResNet152 / WMW

2011 2012 2013 2014 2015 2016 2017

Image © Electronic Frontier Foundation

ImageNet Large Scale Visual Recognition Challenge
is the biggest object classification competition,

organized since 2010



Nobody phrases it this way, but | think that
artificial intelligence is almost a humanities
discipline. It's really an attempt to
understand human intelligence and human
cognition.

Sebastian Thrun
Professor, Stanford University



